368 research outputs found

    Exploiting road traffic data for very short term load forecasting in smart grids

    Get PDF
    If accurate short term prediction of electricity consumption is available, the Smart Grid infrastructure can rapidly and reliably react to changing conditions. The economic importance of accurate predictions justifies research for more complex forecasting algorithms. This paper proposes road traffic data as a new input dimension that can help improve very short term load forecasting. We explore the dependencies between power demand and road traffic data and evaluate the predictive power of the added dimension compared with other common features, such as historical load and temperature profiles

    The effect of cross-boundary management on the trajectory to commonness in biological invasions

    Get PDF
    The number of alien species introduced and undergoing range expansion in novel environments is steadily increasing, with important consequences for native ecosystems. The efficacy of management planning and decision making to limit such invasions can be improved by understanding how interventions will impact the population dynamics of recently introduced species. To do so, here we expand on a typological framework that enables the classification of populations over time into 10 categories of commonness, and apply it to a spatially discrete metapopulation with heterogeneous abundance across spatial units (patches). We use this framework to assess the effect of cross-boundary management on the capacity of a metapopulation with different demographic and dispersal characteristics, including time lags in population growth, to become common. We demonstrate this framework by simulating a simple theoretical metapopulation model capable of exploring a range of environments, species characteristics, and management actions. Management can vary in the efficacy of propagule interception between patches, and in the synchronisation of the implementation of these measures across patches (i.e. if management is implemented simultaneously across patches). Simulations show that poor interception efficacy that only modestly reduces the number of propagules entering a given spatial unit cannot be compensated for by strong management synchronisation between spatial units. Management synchronisation will nonetheless result in a reduction in rates of spread once a critical threshold of interception efficacy has been met. Finally, time lags in population growth that may result in delayed spread are an important aspect to be considered in management as they can amplify the efficacy of management. Our results demonstrate how a typological framework of categories of commonness can be used to provide practical insights for the management of biological invasions

    THEORETICAL DISTRIBUTION OF FOREIGN GENES IN DIFFERENT CROSSBRED GENERATIONS

    Get PDF

    What are the economic costs of biological invasions? A complex topic requiring international and interdisciplinary expertise

    Get PDF
    Biological invasions can cause substantial economic losses and expenses for management, as well as harm biodiversity, ecosystem services and human well-being. A comprehensive assessment of the economic costs of invasions is a challenging but essential prerequisite for efficient and sustainable management of invasive alien species. Indeed, these costs were shown to be inherently heterogeneous and complex to determine, and substantial knowledge gaps prevent a full understanding of their nature and distribution. Hence, the development of a still-missing global, standard framework for assessing and deciphering invasion costs is essential to identify effective management approaches and optimise legislation. The recent advent of the InvaCost database – the first comprehensive and harmonised compilation of the economic costs associated with biological invasions worldwide – offers unique opportunities to investigate these complex and diverse costs at different scales. Insights provided by such a dataset are likely to be greatest when a diverse range of experience and expertise are combined. For this purpose, an international and multidisciplinary workshop was held from 12th to 15th November 2019 near Paris (France) to launch several project papers based on the data available in InvaCost. Here, we highlight how the innovative research arising from this workshop offers a major step forward in invasion science. We collectively identified five core research opportunities that InvaCost can help to address: (i) decipher how existing costs of invasions are actually distributed in human society; (ii) bridge taxonomic and geographic gaps identified in the costs currently estimated; (iii) harmonise terminology and reporting of costs through a consensual and interdisciplinary framework; (iv) develop innovative methodological approaches to deal with cost estimations and assessments; and (v) provide cost-based information and tools for applied management of invasions. Moreover, we attribute part of the success of the workshop to its consideration of diversity, equity and societal engagement, which increased research efficiency, creativity and productivity. This workshop provides a strong foundation for substantially advancing our knowledge of invasion impacts, fosters the establishment of a dynamic collaborative network on the topic of invasion economics, and highlights new key features for future scientific meetings.Fil: Diagne, Christophe. Universite Paris-Saclay;Fil: Catford, Jane A.. King's College London; Reino UnidoFil: Essl, Franz. Universidad de Viena; AustriaFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Courchamp, Franck. Universite Paris-Saclay

    are ecologically harmful alien species associated with particular introduction pathways?

    Get PDF
    Prioritization of introduction pathways is seen as an important component of the management of biological invasions. We address whether established alien plants, mammals, freshwater fish and terrestrial invertebrates with known ecological impacts are associated with particular introduction pathways (release, escape, contaminant, stowaway, corridor and unaided). We used the information from the European alien species database DAISIE (www.europe- aliens.org) supplemented by the EASIN catalogue (European Alien Species Information Network), and expert knowledge. Plants introduced by the pathways release, corridor and unaided were disproportionately more likely to have ecological impacts than those introduced as contaminants. In contrast, impacts were not associated with particular introduction pathways for invertebrates, mammals or fish. Thus, while for plants management strategies should be targeted towards the appropriate pathways, for animals, management should focus on reducing the total number of taxa introduced, targeting those pathways responsible for high numbers of introductions. However, regardless of taxonomic group, having multiple introduction pathways increases the likelihood of the species having an ecological impact. This may simply reflect that species introduced by multiple pathways have high propagule pressure and so have a high probability of establishment. Clearly, patterns of invasion are determined by many interacting factors and management strategies should reflect this complexity

    Patterns and drivers of climatic niche dynamics during biological invasions of island-endemic amphibians, reptiles, and birds

    Get PDF
    Shifts between native and alien climatic niches pose a major challenge for predicting biological invasions. This is particularly true for insular species because geophysical barriers could constrain the realization of their fundamental niches, which may lead to underestimates of their invasion potential. To investigate this idea, we estimated the frequency of shifts between native and alien climatic niches and the magnitude of climatic mismatches using 80,148 alien occurrences of 46 endemic insular amphibian, reptile, and bird species. Then, we assessed the influence of nine potential predictors on climatic mismatches across taxa, based on species' characteristics, native range physical characteristics, and alien range properties. We found that climatic mismatch is common during invasions of endemic insular birds and reptiles: 78.3% and 55.1% of their respective alien records occurred outside of the environmental space of species' native climatic niche. In comparison, climatic mismatch was evident for only 16.2% of the amphibian invasions analyzed. Several predictors significantly explained climatic mismatch, and these varied among taxonomic groups. For amphibians, only native range size was associated with climatic mismatch. For reptiles, the magnitude of climatic mismatch was higher for species with narrow native altitudinal ranges, occurring in topographically complex or less remote islands, as well as for species with larger distances between their native and alien ranges. For birds, climatic mismatch was significantly larger for invasions on continents with higher phylogenetic diversity of the recipient community, and when the invader was more evolutionarily distinct. Our findings highlight that apparently common niche shifts of insular species may jeopardize our ability to forecast their potential invasions using correlative methods based on climatic variables. Also, we show which factors provide additional insights on the actual invasion potential of insular endemic amphibians, reptiles, and birds

    A proposed unified framework to describe the management of biological invasions

    Get PDF
    Managing the impacts of invasive alien species (IAS) is a great societal challenge. A wide variety of terms have been used to describe the management of invasive alien species and the sequence in which they might be applied. This variety and lack of consistency creates uncertainty in the presentation and description of management in policy, science and practice. Here we expand on the existing description of the invasion process to develop an IAS management framework. We define the different forms of active management using a novel approach based on changes in species status, avoiding the need for stand-alone descriptions of management types, and provide a complete set of potential management activities. We propose a standardised set of management terminology as an emergent feature of this framework. We identified eight key forms of management: (1) pathway management, (2) interception, (3) limits to keeping, (4) secure keeping, (5) eradication, (6) complete reproductive removal, (7) containment and (8) suppression. We recognise four associated terms: prevention; captive management; rapid eradication; and long-term management, and note the use of impact mitigation and restoration as associated forms of management. We discuss the wider use of this framework and the supporting activities required to ensure management is well-targeted, cost-effective and makes best use of limited resources
    corecore